Coincidence points of (n, m)-valued pairs of maps of a circle

Alan Żeromski
Faculty of Applied Physics and Mathematics
Gdańsk University of Technology, Gdańsk, Poland
alan.zeromski@pg.edu.pl
Grzegorz Graff
Faculty of Applied Physics and Mathematics
Gdańsk University of Technology, Gdańsk, Poland
grzegorz.graff@pg.edu.pl
\section*{P. Christopher Staecker}
Department of Mathematics
Fairfield University, Fairfield, United States
cstaecker@fairfield.edu

Given sets X, Y and $n \in \mathbb{N}$, a map $f: X \multimap Y$ is n-valued, if for every $x \in X$ the image $f(x)$ has cardinality n [3]. A graph intersection point of a pair of multivalued maps f and g is defined as a point $(x, y) \in X \times Y$ for which $f(x) \cap g(x) \neq \emptyset$, while a domain coincidence point is the x-coordinate of some point of the above intersections [1, 2]. In this talk we consider (n, m)-valued pairs of maps $f, g: S^{1} \multimap S^{1}$ and study the relations between the number of domain coincidence points and the number of their graph intersection points.

References

[1] Brown R.F., Kolahi, K. Nielsen coincidence, fixed point and root theories of n-valued maps. J. Fixed Point Theory Appl. 14, 309-324 (2013).
[2] Brown R.F. Fixed Points of n-Valued Multimaps of the Circle. Bulletin of the Polish Academy of Sciences. Mathematics 54.2 (2006): 153-162.
[3] Staecker P.C. Axioms for the fixed point index of n-valued maps, and some applications. J. Fixed Point Theory Appl. 20, 61 (2018).

