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The Hamilton-Jacobi equation

−Vt +H(t, x,−Vx) = 0 in (0, T )× Rn,
V (T, x) = g(x) in Rn,

(1)

with a convex Hamiltonian H in the gradient variable can be studied with
connection to optimal control problems. It is possible, provided that there
exists a sufficiently regular triple (A, f, l) satisfying the following equality

H(t, x, p) = supa∈A { ⟨ p , f(t, x, a) ⟩ − l(t, x, a) }. (2)

Then the value function of the optimal control problem defined by

V (t0, x0) = inf
(x,a)(·)∈Sf (t0,x0)

{
g(x(T )) +

∫ T

t0

l(t, x(t), a(t)) dt
}

represents the equation (1), where Sf (t0, x0) denotes the set of all trajectory-
control pairs of the control system ẋ(t) = f(t, x(t), a(t)), with a(t) ∈ A, for a.e.
t ∈ [t0, T ] and x(t0) = x0.

The triple (A, f, l), which satisfies the equality (2), is called a representation
of H. In the literature (see [1], [2], [3], [4]), one can find constructions of repre-
sentations for sublinear Hamiltonians (e.g., H(t, x, p) = α(t)|x||p|). We demon-
strate the construction of representations for superlinear Hamiltonians (e.g.,
H(t, x, p) = α(t)|x|2|p|2). It is known that these representations are constructed
using theorems on Lipschitz parametrizations of Lipschitz set-valued maps. In
our case, we parametrize the set-valued map E(t, x) = epiH∗(t, x, ·) which is
derived from the epigraph of the Legendre-Fenchel conjugate of H(t, x, ·). While
for sublinear Hamiltonians, the set-valued maps are Lipschitz continuous in the
Hausdorff sense, for superlinear Hamiltonians, they exhibit Lipschitz continuity
in the Aubin sense. The lack of parametrization theorems for the latter case is
addressed by introducing an appropriate theorem for parametrizing set-valued
maps with Lipschitz continuity in the Aubin sense.
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