The Dirichlet problem with the competing (p,q)-Laplacian with unbounded weight

Igor Kossowski

Institute of Mathematics, Lodz University of Technology, Poland igor.kossowski@p.lodz.pl

Josef Diblík

Faculty of Electrical Engineering and Communication,
Department of Mathematics, Brno University of Technology
diblik@vut.cz

Marek Galewski

Institute of Mathematics, Lodz University of Technology, Poland marek.galewski@p.lodz.pl

Dumitru Motreanu

Department of Mathematics, University of Perpignan motreanu@univ-perp.fr

Lest us consider the following boundary value problem

$$\begin{cases} -\operatorname{div}\left(g(u)|\nabla u|^{p-2}\nabla u\right) + \operatorname{div}\left(|\nabla u|^{q-2}\nabla u\right) = f(x,u,\nabla u) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is bounded domain with Lipschitz boundary $\partial\Omega$, p>q>1, $g\colon\mathbb{R}\to\mathbb{R}$ and $f\colon\Omega\times\mathbb{R}\times\mathbb{R}^N\to\mathbb{R}$. We shall investigate the existence of generalized solutions of the above problem. To obtain this result, we will use some abstract principle, which relies on the Galerkin scheme.

References

[1] J. Diblik, M. Galewski, I. Kossowski, D. Motreanu, On competing (p,q)Laplacian Drichlet problem with unbounded weight, to appear in Differential
and Integral Equations