The Dirichlet problem with the competing (p, q)-Laplacian with unbounded weight

Igor Kossowski
Institute of Mathematics, Lodz University of Technology, Poland
igor.kossowski@p.lodz.pl
Josef Diblík
Faculty of Electrical Engineering and Communication, Department of Mathematics, Brno University of Technology
diblik@vut.cz
Marek Galewski
Institute of Mathematics, Lodz University of Technology, Poland
marek.galewski@p.lodz.pl
Dumitru Motreanu
Department of Mathematics, University of Perpignan
motreanu@univ-perp.fr

Lest us consider the following boundary value problem

$$
\begin{cases}-\operatorname{div}\left(g(u)|\nabla u|^{p-2} \nabla u\right)+\operatorname{div}\left(|\nabla u|^{q-2} \nabla u\right)=f(x, u, \nabla u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is bounded domain with Lipschitz boundary $\partial \Omega, p>q>1$, $g: \mathbb{R} \rightarrow \mathbb{R}$ and $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$. We shall investigate the existence of generalized solutions of the above problem. To obtain this result, we will use some abstract principle, which relies on the Galerkin scheme.

References

[1] J. Diblik, M. Galewski, I. Kossowski, D. Motreanu, On competing (p, q)Laplacian Drichlet problem with unbounded weight, to appear in Differential and Integral Equations

